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ABSTRACT 

0 

This paper deals with the recovery of a continuous signal from 

received discrete data. Very often, two se ts  of discrete data, obtained 

independently, a r e  available for the recovery of a continuous signal. 

The two se ts  of discrete data have, in general, different data-rates. 

A better signal recovery will  be achieved if both se t s  of data a r e  

employed in  an optimum way, rather than when only one of the two se t s  

is used. Optimum systems using both sets of discrete data a re ,  in 

general, time-varying as opposed to the time-invariant property of the 

systems using only one se t  of discrete data, even though the signals 

and noise a r e  stationary. 

A procedure for the optimum recovery of a continuous signal 

using two se ts  of discrete input-data will  be developed, and methods 

for evaluating the mean square-error will  be shown. 

also be given to illustrate the method, and the quality, of the double- 

input system a s  compared with that of the single-input system. 

An example will  

, 
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INTRODUCTION 

In communication and control systems the recovery of a con- 

tinuous random signal f rom received discrete data is an important 

problem. The discrete data occur in many practical situations. There 

a r e  situations when the data-gathering devices themselves, are capable 

of producing only discrete sets of numbers rather than a continuous 

variable. There are also situations when practical advantages are to 

be gained by transmitting and processing only a sequence of numbers 

as opposed to a continuous variable. The recovery of a continuous 

signal from discrete data is further complicated by the random noise 

in the transmitting and processing channels. 

recovery is composed of two operations, namely, extrapolation (or 

interpolation) and noise removal. 

Therefore, the signal 

Very often the available discrete data appear in several different 

forms. For  instance, in guidance and control systems, measurements 

of a certain quantity may be taken by two different methods having both 
different data-rates and different accuracies, such as separately ob- 

tained measurements of position signal and i ts  f irst  derivatives. 

best signal recovery will be obtained if  both measurements are used 

and their results are weighted and combined in an optimum way. 

is solved by Franklin1 in the Wiener sense 

that the theory of double input optimum signal recovery cannot be ob- 

tained by a simple extension of the theory for the single input case. 

basic difference is the following. 

systems having a single input-data-rate, the optimum system is time- 

invariant i f  the input signals are stationary. But for the double input 

system, whose two input-data-rates are different, the optimum system is 

time-varying even though the inputs a r e  stationary 

function of the system is a function of two independent variables. 

The 

In the case of single input optimum signal recovery, the problem 
2 It is important to note 

The 

For both single input and double input 

3 In fact, the transfer 

In this 
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paper a procedure of optimum signal recovery by the double input 

system having two different input ra tes  will be developed, the method 

of e r r o r  analysis wil l  be shown, and an example will  be given to illus- 

trate the method. It will also be shown in the example how the quality 

of the double-input system compares with those of the single-input 

system. 
Three assumptions a re  used for the development of the thoery: 

f irst ,  the time se r i e s  representing the signal and noise a r e  stationary 

and have rational spectral  density functions; second, the performance 

criterion used is to minimize the continuous statistical mean square- 

e r r o r  between the system output and the ideal signal; and third, the 

system operation is linear. These assumptions can be justified for 

many practical considerations. 

MATHE MATICAL FORMULATION 

The hypothetical block diagram of the system is shown in Fig. 

1. 

represent the characteristics of two transmitting and processing 

In this figure, r is the desired signal to be recovered. M1 and M2 

channels which generate the random noise n1 and n respectively. 2 
r and r a r e  the hypothetical noise-contaminated continuous signals. 

The actual available discrete data at the output of the channels is de- 
1 2 

* * 
noted by r l  and r2 . G1 and G are  the optimum systems to be synthe- 2 
sized. 

the difference between r and the actual system output c. 

The e r r o r  e, whose mean squared value is to be minimzed, is 

Fig. 2 defines the time variables used for the development of 

T I  and T2 a r e  two different sampling periods. the theory. 

city of the derivation, it is assumed that the ratio of T1 and T2 be an 

integer. The time of observation is denoted by t., which is T~ and T~ 

seconds behind the last  sampling instants having sampling periods 

T and T respectively. 

For  simpli- 

1 2 
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i 

Let the impulse response of G1 and G2 be 

where g1 (nT1) is a function of n, T~ and 7 

of i, 7 1 
since 7 is known once T~ is given. 

while g (iT ) is a function 

and T ~ .  Notice that between T~ and T~ only one is independent, 
2' 2 2  

The output of the system is 2 

c (t) = 1 r l  (t-7 1 -nT1) g1 (nT1) + 1 r2 ( t - ~ ~ - i T ~ )  g2 (iT2) (1) 

ab m 

n= 0 l= 0 

and the output e r r o r  is 

e (t)  = r (t) - c (t). (2)  

Squaring the e r r o r  gives 

-2r(t) x r 2  (t-T2-iT2) g2 (iT2) 

i 

n m  

n i  
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where n, m, i and j a r e  dummy integers. Recalling that in the theory 

of random processes, the correlation function of two stationary time 

functions x (t) and y (t) is 

0 ( 6 )  = Ensemble average of [x (t)  y (t+6,] 
XY 

= Time average of [x (t) y (t+ 6 )] . 
Taking the ensemble average of Eq. ( 3 )  results in the mean square- 

e r r o r  

The problem then of optimum synthesis is to find g1 (nT1) and 

g, (iT,) such that Eq. (4) is a minimum, 

NECESSARY AND SUFFICIENT CONDITION 

To minimize the mean square-error, the method of variational 
4 calculus is used, Let A#ee(0) be the variation of dee(0). and let 

Agl(nT1) and Ag2(iT2) be the variations of gl(nT1) and g2(nT2) 



. 
. 5 

respectively. If gl(nT1) and gz(iT2) are the optimum system impulse 

responses which minimize # 
function of the variations Agl(nT1) and Ag2(iT2), should be zero. Tha? 

is 

(0), then the variation of A#ee(0), as a ee 

or ,  expressing this in a more convenient form 

A#ee(0) = 2 T- L Ag 1 (nT1) ( n T l - ~ T 1 )  g, (mT1) 
n 

I J 



r 6 

n 1 

J -I 

Since Eq. (6 )  must hold for any physically realizable Agl(nT1) and 

A g  (iT2), it  requires that the expressions inside the brackets should be 

equal to zero individually. 
2 

= #  ( T  +iT2) r2r 2 

The above derivation has 

(8) impose the necessary 

shown that the summation 

condition for the optimum 

It can be shown that the condition is also sufficient, 

i >o .  

equations (7)  and 

g (nT1) and g2(iT2). 
since the second 

- 

1 

variation of # 
fied. 

(0) is never negative when Equations (7)  and (8) are satis- ee 
Solution of the two equations yields the optimum gl(nT1) and 

g2(iT2 ) o  

SOLUTION OF SUMMATION EQUATIONS ------ - 

The form of Equations (7 )  and (8) suggests that their solution may 

be obtained by transforming the equations to, and solving the equations in, 
the frequency domain, In both Equations (7) and (8), first, transpose the 

right side terms to the left side, and then, denote the left side of the ob- 

tained equations by f l(nT1) and f2(iT2), respectively. Then 
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n > O  fl(nT1) = 0 - 

f2(iT2) = 0 i - > 0. (10) 

where a is an integer. Remember it has been assumed that T2= - 
U s e  ${ } to represent the z-transformation having sampling period 

T1 and use %{ 
sampling period 

with respect to n, and the za-transform of Eq. (8) with respect to i, 

gives 

T1 
a 

} to represent the za- transformation having 

Taking the two-sided z-transform of 13qe (7) a 

where s is the Laplace transformvariable, z is the z-transform 

variable, and z is the z -transform variable. Two sided transforma- a a 
tions are necessary, s ince the correlation functions a r e  non-zero for 

negative values of n and i. The term zF1(z), which is the z-transform 

of fl(nT1), has all i ts  poles outside the unit-circle of the z-plane due to 

Eq. (9). Similarly, the t e rm zaF2(za)’ which is the za-transform of 

f2(iT2), has all its poles outside the unit-circle of the za-plane due to 

Eq. (10). 

Multiplying Eq. 

$r r (5) 
-1 1 2  

2 2  

( 9 - T 2 ) 5  
e and then z-transforming the whole 
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express ion 

-1 Substracting Eq. (13) from the product of Eq, (11) and z yields 
r 

L 

The bracket factor in  the left-hand side of Eq. (14) is symmetrical with 

respect to z and z-'. Therefore, this bracket factor can be expressed 

as the product of two factors 

' 
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whereY(z) has all its poles and zeros inside the unit-circle of the 

z-plane while Y(z -1 
) has all its poles and zeros outside the unit-circle. 

Substituting Eq. (15) into Eq. (14) and dividing the expression by Y(z -1 ), 

In Eq. (16), the term on the left-hand side has all its poles inside the 

unit-circle, since G1(z) is a stable function and Y(z) has only inside 

poles by definition. The first te rm on the right-hand side of Eq. (16), 

which is completely known, may have poles both inside and outside the 

unit-circle. The partial fraction method can be applied to this term 

to separate it into two parts,  one of which has only inside poles, the 

other having only outside poles. The second term on the right-hand 
side has  all its poles outside the unit-circle. The last term, 
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on the right-hand side of Eq. (16) may have poles both inside and out- 

side the unit-circle. 

that F (z ) is not known. However, all the inside poles of this te rm a r e  

known since F2(a has only outside poles and is the only unknown factor 

in this term. Therefore, the part of this last t e rm having poles inside 

the unit-circle may be expressed as 

This term is not completely known due to the fact 

2 a  

-1 Aiz 

i i 1 

- c 1-ff.Z Z - a .  
1 

where jail < 1. Extracting all the te rms  of Eq. (16) whose poles are 

inside the unit-circle, and dividing the entire expression by Y(z), yields 

the optimum transfer function G(z) as 
F 

Ai + -  -1 1-0.z 
1 

Y(z) 'c 
i 

where the symbol 

bracketed terms,  whose poles a r e  inside the unit-circle, a r e  taken. 
To obtain the optimum transfer function G2(za), let 

is used to indicate that only the part of the 

where all  the poles and zeros of X(za) a r e  inside the unit-circle of the 

z -plane, while all those of X(za 

tuting Eq. (19) into Eq. (12),  dividing both sides by X(za 

arranging the terms,  gives 

-1 ) a r e  outside the unit-circle. Substi- 
-1  a 

), and re-  



- 1  
Z .  

-1  a 
a 2 a  z X(Z,) G ( Z  ) = - 

XCZ, 5 

Therefore, the optimum transfer function G2(za) is 

1 

Now i t  remains only to determine the constant A. contained in Eq. (18).  

This is done by substituting both Equations (18)  and (20) into Eq. (11)  

and comparing coefficients of the terms having like poles. 

1 

It is interesting to note that if one of the two channels does not 

exist, the G,(z) or G2(za) vanishes. 

become 

Therefore, Equations (18)  and (20) 

Both Equations (21) and (22)  are the optimum transfer functions for the 

single input systems. 



12 

ERROR ANALYSIS 

By substituting the necessary and sufficient condition, Equations 

(7) and (8),  into (4), the mean square-error of the optimum system is 
obtained. - 

n I 

Eq. (23) is an 

equivalent is 

equation in the time domain. Its frequency domain 

(24) 
When correlation functions are available, Eq. (23) is used to find the 

mean square-error; on the other hand, when spectral  density functions 

a r e  available, Eq. (24) should be used. 

Example 

Consider a case where the slow-rate channel is noise-free, while 

the fast-rate channel is noisy. The spectral  density functions of the 

signals and noise, shown in Fig. 1, a r e  

4 $rp=+r (SI= - 2 
1 1  4-s 

(white noise) 
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The sampling periods T1 and T2 re 1 and 1 /2  second;' resp.ectively. 

Equations (18) and (20) are used to obtain the optimum transfer 

Notice that the two cases, T -T = O  and T -T = T ~ ,  for the functions. 

optimum G1(z) and G2(za),calculated separately, because the modified 

z -transform method applies only to cases where the time advance is 

a fraction of the sampling period T2. 

is noise-free while the noise in the second channel is white, Eq. (15) 

reduces to 

1 2  1 2  

a 

Consider first the case when T ~ - T ~ = O .  Since the first channel 

Substituting the values of Eq. (25) into Eq. (26) yields 

0.4642 Y(z) Y(Z-5 = 
(1 -0 .03636~-~)  (1-0.036362) * 

Therefore, 
0.682 Y(z)  = 

1-0.036362- 

-1 0.682 
y(z = 1-0.036362 

The inside pole ai in the last term of Eq. (18) is the inside pole of 

, which is 

z = (Y = 0.03636. 

Substituting Equations (25), (28), (29)  and (30) into (18), gives 

Gl(z) = 0.85(0. 1907bl+b2) .t 1.466A, 

where 

b l  = s i n h 2 ~ ~ ,  



t 

b2 = ~ i n h 2 ( T ~ - ~ ~ ) ,  

14 

(33) 

and A is a constant to be determined later. 
To find the optimum G2(za), Eq. (19) is used, giving 

Hence, 

(1-0. 1907~: ') (1-0. 1 9 0 7 ~ ~ )  

(1-0 .368~;~)  (1-0. 368za) 
= 1.93 

(1-0.19072: ') 

(1-0.3682: l )  
X(Za) = 1.39 

-1 ( 1 - 0 . 1 9 0 7 ~ ~ )  

x(za ) = le 39 (1.0. 368za) 

Substituting Equations (25), (35), (36) and (31) into Eq. (20),  gives 

0, 0729b1-0. 707A 

G2(za) = (Z  - 0 .  1907) D a 

(34) 

(35) 

(37) 

where b l  is given by Eq, (32). 

Equations (31) and (37). 

and comparing coefficients of the terms having like pbles, the value of 

A1 is found to be 

The last step is to evaluate the unknown constant A appearing in 

By inserting Equations (31) and (37) into Eq. (11) 

A = 0. 103bl (38) 

This completes the first part of the solution which can be written 

in a final form as 

G1(z) = 0.313bl + 0.85b2 

= 0 . 3 1 3 s i n h 2 ~ ~  + 0 . 8 5 ~ i n h 2 ( T ~ - ~ ~ )  (39) 
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G2(za) = 0. (40) 

The vanishing value of G2(za) in Eq. (40) is expected, since at 
T1=T2=0 the noiseless data received by the first channel is completely 

accepted, while the noisy data received by the second channel is com- 

pletely rejected. 

Consider then the second case when T ~ - T ~ = T  For  this case 2 ’  -1 the expression for Y(z)Y(z 

Equations (27), (28) and (29) are still valid. 

in the last term of Eq. (18) is given by Eq. (30). 

) remains the same as in Eq. (26), therefore 

Moreover, the inside pole 

Substituting Equations 

(25), (28)  and (29) into Eq. (18), and using the-condition that T ~ - T ~ = T ~ ’  

gives 
G1(z) = 0. 162(0. 1907bl+b2) + 1. 466A. ( G l )  

where bl and b are given by Equations (32)  and (33), respectively. 

Equations (35) and (36) are valid for this case. 

(35), (36) and (41), the optimum G2(za) is 

-1 2 
Again, the value of X(za)X(za ) is given by Eq. (34), therefore 

F r o m  Equations (25), 

(0. 1106bl+0. 198b2-1. 92A)za 

G2(za) = ( ~ ~ - 0 .  1907) 

(0. 0379b1+0. 197b2+1. 783A) (za-0. 368) 
+ (za-0.1907) (42) 

To determine the constant A, Equations (41) and (42) are inserted 

into Eq. (ll),  and the residues of l ike poles are compared. One thus 

obtains 

A = 0.0196bl (43) 

This completes the second p a r t  of the solution which can be 

written as 
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G1(z) = 0. 0596b1+0. 162b2 

= 0.0596sinh2~~+0.162sinh2(T~-~~), (44) 

and 
(0. 146b1+0. 395b2)za-(0. 0296b1+0. 0725b2) 

G2(za) = ( Z  -0.1907) J (45) 
a 

with b l  and b2 given by Equation (32) and (33), respectively. 

Notice that in this second part of the solution G2(za) is not zero, 

since at T = T  and T ~ = O  the first channel does not have input data, while 

the second channel does have input data although i t  is noise-contaminated., 

Fig. 3 shows gl(nT1), which is the impulse response of G1(z) and 

1 2  

is given by Equations (39) and (44). 

impulse response of G2(za) and is given by Equations (40) and (45). 

Remember, as was indicated at the begining of the mathematical formu- 

lation, both gl(nT1) and g2(iT2) a r e  also functions of 71 and T ~ .  

evaluated using Eq. (24). 

as follows with the aid of the theory of residues. 

Fig. 4 shows g2(iT2), which is the 

The mean square-error of this optimum system can best be 
Each term of Eq. (24) is separately calculated 

s) e-st1 ] e Z = 0. 0164(b1+2. 717b2)x 

(al+O. 1406a2) (47) 

where bl and b are the same as before, and 2 



a = s inh2  ( T - T ) 

a = s i n h 2 ~  1 2 

= 0.9082d 2 2  b +O. 333d2bl-0. 333dlb2-0. 115dlbl (50) 

where 

dl = 0. 0296b1+0. 0725b2 (51 )  

d 2 = 0. 146b1+0. 396b2 . (32)  

Combining Equations (46), (47) and (50),  results in the mean square- 

e r r o r  

9 ee (0) = 1-0. 0164(b1+2. 717b2) (al+O. 1406a2) 

-0. 9082d2b2-0. 333d2bl 

+O. 333dlb2+0. 1 15dlbl . (53) 

This equation gives the mean square-error, 0 
entire ensemble, and is a function of T ~ .  

averaged over T is given by 

(O),averaged over the ee 
The mean value of Qee(0) 

1 

#ee(0)dT1 = 0.67.  I: (54) 

It is interesting to examine the reduction of mean square-error 

which has been obtained with the optimum double-input system as com- 

pared to that obtained by the optimum single-input systems. 
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When the slow-rate channel alone is used, the optimum system 1 

is given by 

1 

L 
where 

(55) 

W(z) has all its poles and zeros in the left half of the s-plane while those 

of W(z ) are in  the right half of the s-plane. The symbol [ IL 
indicates that only those bracketed terms, having poles in the left half 

of the s-plane, are kept, The mean square-error of this system is 

-1 

Using the data given in Eq. (25), one obtains 

1-0. 1352-1 
G1(S) = s+2 # 

and 

$ (0) = 0.755 D ee 

Comparing the mean square-errors in Equations (54) and (59) yields 

67-00:55 = 12. 7%, which 0. 6 

shows that the double-input system reduces the mean square-error by 

12.7 per cent. 

If the fast-rate channel alone is used, then the transfer function 

of the optimum system and the system mean square-error are 
Tr r(S)  

(61)  1 2 
G 2 ( s )  =q [ x(z,l) ] 

L 
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and 

Qee(0) = .& fi[ grr(S) - Sr (za)G2(s)G2(-s) ds (62)  

where X(za) and X(za-l) are given i n  Equations (35) and (36) respectively. 

Using the values of Eq. (251, the following result is obtained. 

2 2  1 
O.ri82( 1 - 0 . 3 6 8 ~ ~ )  

G2(s)  = 
( s+2)  (1-0. 19O7za-l) (63) 

$ee(0) = 0.888 (64)  

Comparing Equations (54) and (64), one can see that the double-input 

optimum system reduces the mean square-error by 

= 32e6%.  0.67 - 0.888 
0.67 

CONCLUSION 

Very often, two se ts  of discrete data, obtained independently, 

are available for the recovery of a continuous signal. 

of discrete data may also have different data rates. A better signal 

recovery will be achieved i f  both sets of data are employed in an optimum 

way, rather than when only one of the two sets  is used. Optimum systems 

using both sets  of discrete data are,  in general, time-varying as opposed 

to the time-invariant property of the system using only one set  of discrete 

data, even though the signals and noise are stationary. 

These two sets 

The theory and method of obtaining the optimum system for the 

recovery of a continuous signal from two sets of independently received 

discrete data have been developed here in detail. The crucial points in 

the development are: first, how to introduce the time-varying characteris- 

tic into the mathematical formulation of the system; and second, how to 

solve the set  of tw6 simultaneous summation equations involving two 

different sampling rates. 

of the final optimum signal recovering system have also been 

Methods of evaluating the mean square-error 
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shown. An example is given in detail to illustrate the design procedure. 

It can be seen in this typical example that the mean square-error of the 

double-reception system is less than those of the two single reception 

systems by 12.77’0 and 32.67’0. 
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APPENDIX 

Z -Transformation and Za- Transformation of Summation Equations 

The transformation of the summation equations (7) and (8), o r  

equivalently (9) and ( lo) ,  to the frequency domain is derived here. The 

two summation equations are 

f2(iT2) = (7 l+nT - T~ -iT2 )g l(nT 
n 

where 

fl(nT1)=O 

Take the two-sided z-transform of (66) with respect to n t e rm by 

term. 

where F1(z) has all i ts  poles outside the unit-circle of z-plane. 

factor z in front of F (z) is included to indicate that the series expansion 

of %( fl(nTl)} does not possess a constant term. These are the conse- 

quence of the condition imposed by Eq. (68) 

The 

1 
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where the &-transform in  the second line of (72) is taken with respect to 

the variable 5 =nT 

Equating the sum of (71) and (72) to the sum of (73) and (70) gives ( 11) 

on Page 7. 

Similarly, take the two-sided za-transform of (67)  with respect 

to i t e r m  by term., 
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(74) 

where the last  step is legitimate since Tl=aT2 (a being an integer). 

p=1t2 

Equating the sum of (75) and (76) to the sum of (77) and (74) results in (12) 
on Page 7. 


